Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Ophthalmic Plast Reconstr Surg ; 40(2): 206-211, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37972978

RESUMO

PURPOSE: Lacrimal gland adenoid cystic carcinoma (LGACC) is a rare orbital malignancy with devastating lethality. Neoadjuvant intra-arterial chemotherapy (IACC) has demonstrated cytoreductive effects on LGACC macroscopically, but limited studies have examined cellular and molecular determinants of the cytoreductive effect. This post hoc study assessed apoptotic marker expression on excised tumor specimens after neoadjuvant IACC and globe-sparing resection, emphasizing the examination of tumor margins. METHODS: This retrospective study identified LGACC specimens resected in a globe-sparing technique after neoadjuvant IACC by reviewing the Florida Lions Ocular Pathology database at Bascom Palmer Eye Institute. Histopathology slides of the specimens were re-examined to confirm the diagnosis and identify the tumor margin. Immunofluorescent staining was performed for apoptotic markers, including P53, cleaved caspase-3, cleaved PARP-1, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). Positive expression was determined by comparison to the negative control. RESULTS: Tumor specimens from 5 patients met inclusion criteria. All 5 cases were positive at the center and the margin for TUNEL, p53, and cleaved caspase-3. One case did not show positive expression of cleaved PARP-1 at the margin but was positive for the other apoptotic markers. CONCLUSIONS: This post hoc study demonstrated positive staining for multiple apoptotic markers in post-IACC tumor specimens at the tumor center and margin. Apoptotic marker expression along the margins of post-treatment specimens is important, as it may offer surrogate information to speculate on the state of residual cancer cells adjacent to the excision margin inadvertently remaining in the orbit.


Assuntos
Carcinoma Adenoide Cístico , Neoplasias Oculares , Aparelho Lacrimal , Humanos , Carcinoma Adenoide Cístico/tratamento farmacológico , Carcinoma Adenoide Cístico/cirurgia , Caspase 3 , Margens de Excisão , Inibidores de Poli(ADP-Ribose) Polimerases , Estudos Retrospectivos , Proteína Supressora de Tumor p53 , Neoplasias Oculares/tratamento farmacológico
2.
Oncogene ; 43(8): 555-565, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38030788

RESUMO

PRAME is a CUL2 ubiquitin ligase subunit that is normally expressed in the testis but becomes aberrantly overexpressed in many cancer types in association with aneuploidy and metastasis. Here, we show that PRAME is expressed predominantly in spermatogonia around the time of meiotic crossing-over in coordination with genes mediating DNA double strand break repair. Expression of PRAME in somatic cells upregulates pathways involved in meiosis, chromosome segregation and DNA repair, and it leads to increased DNA double strand breaks, telomere dysfunction and aneuploidy in neoplastic and non-neoplastic cells. This effect is mediated at least in part by ubiquitination of SMC1A and altered cohesin function. PRAME expression renders cells susceptible to inhibition of PARP1/2, suggesting increased dependence on alternative base excision repair pathways. These findings reveal a distinct oncogenic function of PRAME that can be targeted therapeutically in cancer.


Assuntos
Melanoma , Neoplasias Uveais , Masculino , Humanos , Melanoma/genética , Reparo do DNA/genética , DNA , Instabilidade Genômica , Aneuploidia , Meiose , Antígenos de Neoplasias/metabolismo
3.
J Chem Phys ; 159(19)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37965999

RESUMO

This work presents systematic comparisons between classical molecular dynamics (cMD) and quantum dynamics (QD) simulations of 15-dimensional and 75-dimensional models in their description of H atom scattering from graphene. We use an experimentally validated full-dimensional neural network potential energy surface of a hydrogen atom interacting with a large cell of graphene containing 24 carbon atoms. For quantum dynamics simulations, we apply Monte Carlo canonical polyadic decomposition to transform the original potential energy surface (PES) into a sum of products form and use the multi-layer multi-configuration time-dependent Hartree method to simulate the quantum scattering of a hydrogen or deuterium atom with an initial kinetic energy of 1.96 or 0.96 eV and an incident angle of 0°, i.e., perpendicular to the graphene surface. The cMD and QD initial conditions have been carefully chosen in order to be as close as possible. Our results show little differences between cMD and QD simulations when the incident energy of the H atom is equal to 1.96 eV. However, a large difference in sticking probability is observed when the incident energy of the H atom is equal to 0.96 eV, indicating the predominance of quantum effects. To the best of our knowledge, our work provides the first benchmark of quantum against classical simulations for a system of this size with a realistic PES. Additionally, new projectors are implemented in the Heidelberg multi-configuration time-dependent Hartree package for the calculation of the atom scattering energy transfer distribution as a function of outgoing angles.

4.
Eye Vis (Lond) ; 10(1): 42, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37779186

RESUMO

BACKGROUND: Optic neuropathy is a major cause of irreversible blindness, yet the molecular determinants that contribute to neuronal demise have not been fully elucidated. Several studies have identified 'ephrin signaling' as one of the most dysregulated pathways in the early pathophysiology of optic neuropathy with varied etiologies. Developmentally, gradients in ephrin signaling coordinate retinotopic mapping via repulsive modulation of cytoskeletal dynamics in neuronal membranes. Little is known about the role ephrin signaling plays in the post-natal visual system and its correlation with the onset of optic neuropathy. METHODS: Postnatal mouse retinas were collected for mass spectrometry analysis for erythropoietin-producing human hepatocellular (Eph) receptors. Optic nerve crush (ONC) model was employed to induce optic neuropathy, and proteomic changes during the acute phase of neuropathic onset were analyzed. Confocal and super-resolution microscopy determined the cellular localization of activated Eph receptors after ONC injury. Eph receptor inhibitors assessed the neuroprotective effect of ephrin signaling modulation. RESULTS: Mass spectrometry revealed expression of seven Eph receptors (EphA2, A4, A5, B1, B2, B3, and B6) in postnatal mouse retinal tissue. Immunoblotting analysis indicated a significant increase in phosphorylation of these Eph receptors 48 h after ONC. Confocal microscopy demonstrated the presence of both subclasses of Eph receptors within the retina. Stochastic optical reconstruction microscopy (STORM) super-resolution imaging combined with optimal transport colocalization analysis revealed a significant co-localization of activated Eph receptors with injured neuronal cells, compared to uninjured neuronal and/or injured glial cells, 48 h post-ONC. Eph receptor inhibitors displayed notable neuroprotective effects for retinal ganglion cells (RGCs) after six days of ONC injury. CONCLUSIONS: Our findings demonstrate the functional presence of diverse Eph receptors in the postnatal mammalian retina, capable of modulating multiple biological processes. Pan-Eph receptor activation contributes to the onset of neuropathy in optic neuropathies, with preferential activation of Eph receptors on neuronal processes in the inner retina following optic nerve injury. Notably, Eph receptor activation precedes neuronal loss. We observed a neuroprotective effect on RGCs upon inhibiting Eph receptors. Our study highlights the importance of investigating this repulsive pathway in early optic neuropathies and provides a comprehensive characterization of the receptors present in the developed retina of mice, relevant to both homeostasis and disease processes.

5.
Data Brief ; 49: 109330, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37409171

RESUMO

Adenoid cystic carcinoma of the lacrimal gland (LGACC) is a slow-growing but aggressive orbital malignancy. Due to the rarity of LGACC, it is poorly understood, which makes diagnosing, treating, and monitoring disease progression difficult. The aim is to understand the molecular drivers of LGACC further to identify potential targets for treating this cancer. Mass spectrometry was performed on LGACC and normal lacrimal gland samples to examine the differentially expressed proteins to understand this cancer's proteomic characteristics. Downstream gene ontology and pathway analysis revealed the extracellular matrix is the most upregulated process in LGACC. This data serves as a resource for further understanding LGACC and identifying potential treatment targets. This dataset is publicly available.

6.
bioRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333178

RESUMO

Background: Optic neuropathy (ON) is a major cause of irreversible blindness, yet the molecular determinants that contribute to neuronal demise have not been fully elucidated. Several studies have identified 'ephrin signaling' as one of the most dysregulated pathways in the early pathophysiology of ON with varied etiologies. Developmentally, gradients in ephrin signaling coordinate retinotopic mapping via repulsive modulation of cytoskeletal dynamics in neuronal membranes. Little is known about the role ephrin signaling played in the post-natal visual system and its correlation with the onset of optic neuropathy. Methods: Postnatal mouse retinas were collected for mass spectrometry analysis for Eph receptors. Optic nerve crush (ONC) model was employed to induce optic neuropathy, and proteomic changes during the acute phase of neuropathic onset were analyzed. Confocal and super-resolution microscopy determined the cellular localization of activated Eph receptors after ONC injury. Eph receptor inhibitors assessed the neuroprotective effect of ephrin signaling modulation. Results: Mass spectrometry revealed expression of seven Eph receptors (EphA2, A4, A5, B1, B2, B3, and B6) in postnatal mouse retinal tissue. Immunoblotting analysis indicated a significant increase in phosphorylation of these Eph receptors 48 hours after ONC. Confocal microscopy demonstrated the presence of both subclasses of Eph receptors in the inner retinal layers. STORM super-resolution imaging combined with optimal transport colocalization analysis revealed a significant co-localization of activated Eph receptors with injured neuronal processes, compared to uninjured neuronal and/or injured glial cells, 48 hours post-ONC. Eph receptor inhibitors displayed notable neuroprotective effects after 6 days of ONC injury. Conclusions: Our findings demonstrate the functional presence of diverse Eph receptors in the postnatal mammalian retina, capable of modulating multiple biological processes. Pan-Eph receptor activation contributes to the onset of neuropathy in ONs, with preferential activation of Eph receptors on neuronal processes in the inner retina following optic nerve injury. Notably, Eph receptor activation precedes neuronal loss. We observed neuroprotective effects upon inhibiting Eph receptors. Our study highlights the importance of investigating this repulsive pathway in early optic neuropathies and provides a comprehensive characterization of the receptors present in the developed retina of mice, relevant to both homeostasis and disease processes.

7.
Cancers (Basel) ; 15(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37370820

RESUMO

Although primary tumors of the lacrimal gland are rare, adenoid cystic carcinoma (ACC) is the most common and lethal epithelial lacrimal gland malignancy. Traditional management of lacrimal gland adenoid cystic carcinoma (LGACC) involves the removal of the eye and surrounding socket contents, followed by chemoradiation. Even with this radical treatment, the 10-year survival rate for LGACC is 20% given the propensity for recurrence and metastasis. Due to the rarity of LGACC, its pathobiology is not well-understood, leading to difficulties in diagnosis, treatment, and effective management. Here, we integrate bulk RNA sequencing (RNA-seq) and spatial transcriptomics to identify a specific LGACC gene signature that can inform novel targeted therapies. Of the 3499 differentially expressed genes identified by bulk RNA-seq, the results of our spatial transcriptomic analysis reveal 15 upregulated and 12 downregulated genes that specifically arise from LGACC cells, whereas fibroblasts, reactive fibrotic tissue, and nervous and skeletal muscle account for the remaining bulk RNA-seq signature. In light of the analysis, we identified a transitional state cell or stem cell cluster. The results of the pathway analysis identified the upregulation of PI3K-Akt signaling, IL-17 signaling, and multiple other cancer pathways. This study provides insights into the molecular and cellular landscape of LGACC, which can inform new, targeted therapies to improve patient outcomes.

8.
Res Sq ; 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37162820

RESUMO

PRAME is a CUL2 ubiquitin ligase subunit that is normally expressed in the testis but becomes aberrantly overexpressed in many cancer types in association with aneuploidy and metastasis. Here, we show that PRAME is expressed predominantly in spermatogonia around the time of meiotic crossing-over in coordination with genes mediating DNA double strand break repair. Expression of PRAME in somatic cells upregulates pathways involved in meiosis, chromosome segregation and DNA repair, and it leads to increased DNA double strand breaks, telomere dysfunction and aneuploidy in neoplastic and non-neoplastic cells. This effect is mediated at least in part by ubiquitination of SMC1A and altered cohesin function. PRAME expression renders cells susceptible to inhibition of PARP1/2, suggesting increased dependence on alternative base excision repair pathways. These findings reveal a distinct oncogenic function of PRAME than can be targeted therapeutically in cancer.

9.
J Chem Phys ; 158(20)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37226993

RESUMO

In this work, we have studied the photodissociation of the protonated derivatives of N-nitrosodimethylamine [(CH3)2N-NO] with the CASPT2 method. It is found that only one of the four possible protonated species of the dialkylnitrosamine compound absorbs in the visible region at 453 nm, that is, N-nitrosoammonium ion [(CH3)2NH-NO]+. This species is also the only one whose first singlet excited state is dissociative to directly yield the aminium radical cation [(CH3)2NHN·]+ and nitric oxide. In addition, we have studied the intramolecular proton migration reaction {[(CH3)2N-NOH]+ → [(CH3)2NH-NO]+} both in the ground and excited state (ESIPT/GSIPT); our results indicate that this process is not accessible neither in the ground nor in the first excited state. Furthermore, as a first approximation, MP2/HF calculations on the nitrosamine-acid complex indicate that in acidic solutions of aprotic solvents, only [(CH3)2NH-NO]+ is formed.

10.
J Phys Chem Lett ; 14(20): 4789-4795, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37186953

RESUMO

Light-induced charge accumulation is at the heart of biomimetic systems aiming at solar fuel production in the realm of artificial photosynthesis. Understanding the mechanisms upon which these processes operate is a necessary condition to drive down the rational catalyst design road. We have built a nanosecond pump-pump-probe resonance Raman setup to witness the sequential charge accumulation process while probing vibrational features of different charge-separated states. By employing a reversible model system featuring methyl viologen (MV) as a dual electron acceptor, we have been able to watch the photosensitized production of its neutral form, MV0, resulting from two sequential electron transfer reactions. We have found that, upon double excitation, a fingerprint vibrational mode corresponding to the doubly reduced species appears at 992 cm-1 and peaks at 30 µs after the second excitation. This has been further confirmed by simulated resonance Raman spectra which fully support our experimental findings in this unprecedented buildup of charge seen by a resonance Raman probe.

11.
J Chem Phys ; 158(11): 114109, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36948837

RESUMO

In the present work, we introduce a simple means of obtaining an analytical (i.e., grid-free) canonical polyadic (CP) representation of a multidimensional function that is expressed in terms of a set of discrete data. For this, we make use of an initial CP guess, even not fully converged, and a set of auxiliary basis functions [finite basis representation (FBR)]. The resulting CP-FBR expression constitutes the CP counterpart of our previous Tucker sum-of-products-FBR approach. However, as is well-known, CP expressions are much more compact. This has obvious advantages in high-dimensional quantum dynamics. The power of CP-FBR lies in the fact that it requires a grid much coarser than the one needed for the dynamics. In a subsequent step, the basis functions can be interpolated to any desired density of grid points. This is useful, for instance, when different initial conditions (e.g., energy content) of a system are to be considered. We show the application of the method to bound systems of increased dimensionality: H2 (3D), HONO (6D), and CH4 (9D).

12.
Cancers (Basel) ; 15(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36900183

RESUMO

Adenoid cystic carcinoma (ACC) is an aggressive malignancy that most often arises in salivary or lacrimal glands but can also occur in other tissues. We used optimized RNA-sequencing to analyze the transcriptomes of 113 ACC tumor samples from salivary gland, lacrimal gland, breast or skin. ACC tumors from different organs displayed remarkedly similar transcription profiles, and most harbored translocations in the MYB or MYBL1 genes, which encode oncogenic transcription factors that may induce dramatic genetic and epigenetic changes leading to a dominant 'ACC phenotype'. Further analysis of the 56 salivary gland ACC tumors led to the identification of three distinct groups of patients, based on gene expression profiles, including one group with worse survival. We tested whether this new cohort could be used to validate a biomarker developed previously with a different set of 68 ACC tumor samples. Indeed, a 49-gene classifier developed with the earlier cohort correctly identified 98% of the poor survival patients from the new set, and a 14-gene classifier was almost as accurate. These validated biomarkers form a platform to identify and stratify high-risk ACC patients into clinical trials of targeted therapies for sustained clinical response.

13.
Ophthalmol Sci ; 3(1): 100217, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36275202

RESUMO

Purpose: To identify optic nerve (ON) lipid alterations associated with sonication-induced traumatic optic neuropathy (TON). Design: Experimental study. Subjects: A mouse model of indirect TON was generated using sound energy concentrated focally at the entrance of the optic canal using a laboratory sonifier with a microtip probe. Methods: Analyses of datasets generated from high-performance liquid chromatography-electrospray tandem mass spectrometry of ONs dissected from the head of the ON to the optic chiasm at 1 day, 7 days, and 14 days postsonication compared with that in nonsonicated controls. Main Outcome Measures: Lipid abundance alterations in postsonicated ONs were evaluated using 1-way analysis of variance (false discovery rate-adjusted significant P value < 0.01), lipid-related gene sets, biochemical properties, and receiver operating characteristic to identify lipids associated with optic neuropathy. Results: There were 28 lipid species with significantly different abundances across the control and postsonication groups. The 2 most significantly upregulated lipids included a sphingomyelin (SM) species, SM(d40:7), and a hexosylceramide (CerG1) species, CerG1(d18:1/24:2). Hexosylceramide (d18:1/24:2) was noted to have a stepwise increasing trend from day 1 to day 14 after sonication-induced optic neuropathy. Investigation of biophysical properties showed notable enrichment of lipids with high and above-average transition temperatures at day 14 after sonication. Lipid-related gene set analysis revealed enrichment in sphingolipid and glycosphingolipid metabolic processes. The best classifier to differentiate day 14 postsonication from controls, based on area under the receiver operating characteristic curve, was CerG1(d18:1/24:2) (area under the receiver operating characteristic curve: 1). Conclusions: Temporal alterations in sphingolipid metabolism and biochemical properties were observed in the ON of mice after sonication-induced optic neuropathy, with notable elevations in sphingomyelin and hexosylceramide species. Hexosylceramide (d18:1/24:2) may be associated with damage after indirect trauma, indicating that lipid membrane abnormalities may be a mediator of pathology due to trauma.

14.
Biomolecules ; 12(12)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36551313

RESUMO

The purpose of this work is to identify mitochondrial optic nerve (ON) lipid alterations associated with sonication-induced traumatic optic neuropathy (TON). Briefly, a mouse model of indirect TON was generated using sound energy concentrated focally at the entrance of the optic canal using a laboratory sonifier (Branson Digital Sonifier 450, Danbury, CT, USA) with a microtip probe. We performed an analysis of a previously generated dataset from high-performance liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS). We analyzed lipids from isolated mitochondria from the ON at 1 day, 7 days, and 14 days post-sonication compared to non-sonicated controls. Lipid abundance alterations in post-sonicated ON mitochondria were evaluated with 1-way ANOVA (FDR-adjusted significant p-value < 0.01), debiased sparse partial correlation (DSPC) network modeling, and partial least squares-discriminant analysis (PLS-DA). We find temporal alterations in triglyceride metabolism are observed in ON mitochondria of mice following sonication-induced optic neuropathy with notable depletions of TG(18:1/18:2/18:2), TG(18:1/18:1/18:1), and TG(16:0/16:0/18:1). Depletion of mitochondrial triglycerides may mediate ON damage in indirect traumatic optic neuropathy through loss energy substrates for neuronal metabolism.


Assuntos
Traumatismos do Nervo Óptico , Camundongos , Animais , Traumatismos do Nervo Óptico/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Nervo Óptico/metabolismo , Mitocôndrias/metabolismo , Lipídeos
15.
J Phys Chem Lett ; 13(48): 11128-11135, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36442084

RESUMO

A Gaussian process regression (GPR) approach for directly constructing the canonical polyadic decomposition (CPD) of a multidimensional potential energy surface (PES) by discrete training energies is proposed and denoted by CPD-GPR. The present CPD-GPR method requires the kernel function in a product of a series of one-dimensional functions. To test CPD-GPR, the reactive probabilities of H + H2 as a function of kinetics energy are performed. Comparing the dynamics results computed by the CPD-GPR PES with those by the original PES, a good agreement between these results can be clearly found. Discussions on the previous algorithms for building the decomposed form are also given. We further show that the CPD-GPR method might be the general algorithm for building the decomposed form. However, further development is needed to reduce the CPD rank. Therefore, the present CPD-GPR method might be helpful to inspire ideas for developing new tools in building decomposed potential functions.

16.
Cancers (Basel) ; 14(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36230889

RESUMO

Retinoblastoma is the most common eye cancer in children and is fatal if left untreated. Over the past three decades, chemotherapy has become the mainstay of eye-sparing treatment. Nevertheless, chemoresistance continues to represent a major challenge leading to ocular and systemic toxicity, vision loss, and treatment failure. Unfortunately, the mechanisms leading to chemoresistance remain incompletely understood. Here, we engineered low-passage human retinoblastoma cells to study the early molecular mechanisms leading to resistance to carboplatin, one of the most widely used agents for treating retinoblastoma. Using single-cell next-generation RNA sequencing (scRNA-seq) and single-cell barcoding technologies, we found that carboplatin induced rapid transcriptomic reprogramming associated with the upregulation of PI3K-AKT pathway targets, including ABC transporters and metabolic regulators. Several of these targets are amenable to pharmacologic inhibition, which may reduce the emergence of chemoresistance. We provide evidence to support this hypothesis using a third-generation inhibitor of the ABCB1 transporter.

17.
Sci Adv ; 8(33): eabm8466, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35984874

RESUMO

Retinoblastoma (Rb) is a deadly childhood eye cancer that is classically initiated by inactivation of the RB1 tumor suppressor. Clinical management continues to rely on nonspecific chemotherapeutic agents that are associated with treatment resistance and toxicity. Here, we analyzed 103 whole exomes, 20 whole transcriptomes, 5 single-cell transcriptomes, and 4 whole genomes from primary Rb tumors to identify previously unknown Rb dependencies. Several recurrent genomic aberrations implicate estrogen-related receptor gamma (ESRRG) in Rb pathogenesis. RB1 directly interacts with and inhibits ESRRG, and RB1 loss uncouples ESRRG from negative regulation. ESRRG regulates genes involved in retinogenesis and oxygen metabolism in Rb cells. ESRRG is preferentially expressed in hypoxic Rb cells in vivo. Depletion or inhibition of ESRRG causes marked Rb cell death, which is exacerbated in hypoxia. These findings reveal a previously unidentified dependency of Rb cells on ESRRG, and they implicate ESRRG as a potential therapeutic vulnerability in Rb.

18.
Phys Chem Chem Phys ; 24(22): 14072-14084, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35640548

RESUMO

We present a detailed theoretical survey of the electronic structure of excited states of the CO2 molecule, with the aim of providing a well-defined theoretical framework for the quantum dynamical studies at energies beyond 12 eV from the ground state. One of the major goals of our work is to emphasize the need for dealing with the presence of both molecular valence and Rydberg states. Although a CASSCF/MRCI approach can be used to appropriately describe the lowest-lying valence states, it becomes incapable of describing the upper electronic states due to the exceedingly large number of electronic excitations required. To circumvent this we employ instead the EOM-CCSD monoconfigurational method to describe the manifold of both valence and Rydberg states in the Franck-Condon region and then a matching procedure to connect these EOM-CCSD eigensolutions with those obtained from CASSCF/MRCI in the outer region, thus ensuring the correct asymptotic behavior. Within this hybrid level of theory, we then analyze the role of valence and Rydberg states in the dynamical mechanism of the photodissociation of quasi-linear CO2 into CO + O fragments, by considering a simple but effective 1D multistate non-adiabatic model for the ultrafast C-O bond break up. We show evidence that the metastability of the Rydberg states must be accounted for in the ultrafast dynamics since they produce changes in the photodissociation yields within the first tens of fs.

19.
Transl Vis Sci Technol ; 11(4): 4, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35377941

RESUMO

Purpose: Müller glia (MG) in the retina of Xenopus laevis (African clawed frog) reprogram to a transiently amplifying retinal progenitor state after an injury. These progenitors then give rise to new retinal neurons. In contrast, mammalian MG have a restricted neurogenic capacity and undergo reactive gliosis after injury. This study sought to establish MG cell lines from the regeneration-competent frog and the regeneration-deficient mouse. Methods: MG were isolated from postnatal day 5 GLAST-CreERT; Rbfl/fl mice and from adult (3-5 years post-metamorphic) X laevis. Serial adherent subculture resulted in spontaneously immortalized cells and the establishment of two MG cell lines: murine retinal glia 17 (RG17) and Xenopus glia 69 (XG69). They were characterized for MG gene and protein expression by qPCR, immunostaining, and Western blot. Purinergic signaling was assessed with calcium imaging. Pharmacological perturbations with 2'-3'-O-(4-benzoylbenzoyl) adenosine 5'-triphosphate (BzATP) and KN-62 were performed on RG17 cells. Results: RG17 and XG69 cells express several MG markers and retain purinergic signaling. Pharmacological perturbations of intracellular calcium responses with BzATP and KN-62 suggest that the ionotropic purinergic receptor P2X7 is present and functional in RG17 cells. Stimulation of XG69 cells with adenosine triphosphate-induced calcium responses in a dose-dependent manner. Conclusions: We report the characterization of RG17 and XG69, two novel MG cell lines from species with significantly disparate retinal regenerative capabilities. Translational Relevance: RG17 and XG69 cell line models will aid comparative studies between species endowed with varied regenerative capacity and will facilitate the development of new cell-based strategies for treating retinal degenerative diseases.


Assuntos
Células Ependimogliais , Neurônios Retinianos , Animais , Células Ependimogliais/metabolismo , Mamíferos , Camundongos , Neuroglia/metabolismo , Retina , Xenopus laevis
20.
Phys Chem Chem Phys ; 24(8): 5109-5115, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35156109

RESUMO

In this work, the decomposition of a prototypical azide, isopropyl azide, both in the ground and excited states, has been investigated through the use of multiconfigurational CASSCF and MS-CASPT2 electronic structure approaches. Particular emphasis has been placed on the thermal reaction starting at the S0 ground state surface. It has been found that the azide thermally decomposes via a stepwise mechanism, whose rate-determining step is the formation of isopropyl nitrene, which is, in turn, the first step of the global mechanism. After that, the nitrene isomerizes to the corresponding imine derivative. Two routes are possible for such a decomposition: (i) a spin-allowed path involving a transition state; and (ii) a spin-forbidden one via a S0/T0 intersystem crossing. Both intermediates have been determined and characterised. Their associated relative energies have been found to be quite similar, 45.75 and 45.52 kcal mol-1, respectively. To complete this study, the kinetics of the singlet and triplet channels are modeled with the MESMER (Master Equation Solver for Multi-Energy Well Reactions) code by applying the RRKM and Landau-Zener (with WKB tunnelling correction) theories, respectively. It is found that the canonical rate-coefficients of the singlet path are 2-orders of magnitude higher than the rate-coefficients of the forbidden reaction. In addition, the concerted mechanism has been investigated that would lead to the formation of the imine derivative and nitrogen extrusion in the first step of the decomposition. After a careful analysis of CASSCF calculations with different active spaces and their comparison with single electronic configuration methods (MP2 and B3LYP), the concerted mechanism is discarded.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...